Delayed High School Start Times later than 8:30 a.m. and Impact on Graduation Rates and Attendance Rates

Authors: Pamela Malaspina McKeever, Ed. D.
Linda Clark, Ph. D.

Corresponding Author: Dr. Pamela Malaspina McKeever, Ed. D.
Corresponding Author's Institution: Central Connecticut State University
Abstract

Objectives: The first purpose of this study was to investigate changes in high school graduation rates with a delayed school start time of later than 8:30 a.m. The second aim of the study was to analyze the association between a delayed high school start time later than 8:30 a.m. and attendance rates.

Design: In the current study, a pre-post design using a repeated measures Analysis of Variance (ANOVA) was used to examine changes in attendance and graduation rates two years after a delayed start was implemented.

Setting: Public high schools from eight school districts (n = 29 high schools) located throughout seven different states. Schools were identified using previous research from the Children’s National Medical Center’s (CNMC) Division of Sleep Medicine Research Team.

Participants and Measurements: A total membership of over 30,000 high school students enrolled in the 29 schools identified by the CNMC Research Team. A pre-post design was used for a within subject design, controlling for any school-to-school difference in the calculation of the response variable. This is the recommended technique for a study that may include data with potential measurement error.

Results: Findings from this study linked a start time of later than 8:30 a.m. to improved attendance rates and graduation rates.

Conclusions: Attendance rates and graduation rates significantly improved in schools with delayed start times of 8:30 a.m. or later. School officials need to take special notice that this investigation also raises questions about whether later start times are a mechanism for closing the achievement gap due to improved graduation rates.

Keywords: Delayed school start times; high school bell times; attendance rates; graduation rates; graduation completion; inadequate sleep; insufficient sleep; adolescent sleep; student social-emotional health
Introduction

Sleep experts agree that school start times are not in synchronization with adolescent sleep cycles, affecting learning and overall wellbeing of students. Proven scientifically, the drive to fall asleep and alert from sleep shifts during adolescence. Previous studies suggest that adolescents need nine hours or more a night to function at peak performance, making 8:30 a.m. or later an ideal start time for adolescent sleep/wake cycles. School start times influence wake times but other factors impact bedtimes. Two national convenience samples were studied to compare changes in bedtime and wake-time from 1981 and 2003-2006 among adolescent students aged 15-17 years old. Findings from this comparative study indicated that over the span of time socio-economic factors and daytime activities predicted weekday bedtime, and school start time predicted weekday wake time. If irregular pubertal sleep patterns result in a decreased sleep drive before 11:00 p.m. because the adolescent body begins to produce melatonin at 11:00 p.m. and stops at about 8:00 a.m., then only a small window of time exists to obtain optimum sleep. Using basic math calculations, it is evident that the amount of sleep recommended is difficult if not impossible to obtain based on the majority of existing bell schedules. To date, a concern lingers that a failure to shift start times may lead to chronic sleep deprivation in high school students. A disconnect occurs because the only way to overcome sleep deprivation is to increase nightly sleep time to satisfy biological sleep needs, a solution that is not an option for most adolescents given the existing bell times.

To draw more attention to the commonly accepted practice of setting early bell schedules, on August 6, 2015, the Centers for Disease Control and Prevention (CDC) released information outlining the school start times of 40,000 middle and high schools. The report indicated that fewer than 20% of middle and high schools start at 8:30 a.m. or later. More specifically, 42 states reported that 75%-100% of public schools start before 8:30 a.m. Survey findings raise awareness about the reluctance by school officials to adjust bell schedules to match adolescent sleep patterns. Further, decisions to condone existing start times persist despite politician and physician attempts to urge local district and state leaders to consider scientific evidence before setting bell times. Stated clearly in a 2005 study published in Pediatrics, physicians concluded boldly that decision-makers set students up for failure by endorsing traditional school schedules. The plea to delay start times are not only expressed by physicians but also by politicians that have called for federal oversight to enact public policies that align to the sleep/wake cycle. Reasons to dismiss schedule changes vary however one argument against the implementation for later school start times is due to a belief by stakeholders that delayed adolescent sleep onset is a behavioral choice, influenced by factors such as socializing with peers and accommodating late job schedules. This stance seems counterintuitive given that evidence suggests that biological processes of the sleep/wake cycle, and not merely teen preferences, are responsible for the delay in drive for sleep.

Consequences of inadequate sleep

An important research finding to consider is that insufficient sleep has been associated with an increase in suicidal attempts, suicidal ideation, substance abuse and
depression in adolescents. Studies showed that inadequate and fragmented sleep impacts student wellbeing. Winsler and colleagues surveyed adolescents (n=27,939) and conclude that a shortened duration of sleep by one hour increased feelings of hopelessness, doom, suicidal ideations, attempted suicides and substance abuse. Further, insomnia and major depression were two symptoms related to sleep quality and quantity in a 2013 study. The study revealed teens that attempted suicide were found to have higher rates of insomnia and sleep disturbance. Experts stress that the relationship between sleep disturbance and completed suicide is important to recognize and further suggest that this could be used as an indicator to initiate intervention and prevention efforts in teens at risk for suicide.

Other high-risk behaviors associated with inadequate sleep have been investigated. Increased rates of automobile accidents were related to earlier start times. Specifically, a study in Virginia found that students that started school at 8:30 a.m. or later had fewer car accidents. Students that attended early classes were more likely to participate in criminal activity and had a higher incidence of engagement in risk-taking behaviors such as drug or alcohol abuse. Further, inadequate sleep in teens has been linked to more problems with regulation of emotions and higher rates of mood disorders. O’Brien and Mindell conclude from self-reports (Sleep Habits Survey and Youth Behavior Survey) distributed to 388 adolescent participants (14-19 years) that students that slept fewer hours reported greater alcohol use than students that slept longer on school nights. Teens that do not obtain an adequate amount of sleep are also more likely to smoke cigarettes, engage in sexual activity, and use marijuana.

Benefits of sufficient sleep
Evidence suggests that a delay in school start time promotes improvement in attendance and tardiness during first period classes. In Wahlstrom’s study, 18,000 Minneapolis high school students (9th-11th grade) showed an improvement in grades and attendance rates when bell times changed from 7:15 a.m. to 8:40 a.m. In this study there was a significant improvement in attendance rates for 9th-11th grade students not continuously enrolled in the same high school, with speculation offered that continuously enrolled students already had high attendance rates pre-delay start time so changes were not as remarkable. Researchers note in the 1998 School Start Time Study that students attending schools with later start times were significantly less likely to arrive to class late because of oversleeping, compared to peers attending schools with earlier start times. Research that compared the academic outcomes of two different middle schools in New England showed that students at the earlier starting school were tardy four times more frequently. Edwards also finds later start times related to decreased absences. Recently, in a three-year study with 9,000 students in eight public high schools over three states, Wahlstrom and colleagues found significant increases in attendance and reduced tardiness with a start time of 8:35 a.m. or later.

Importance of stakeholder consideration to adjust bell times
The decision to continue to set high school start times earlier than 8:30 a.m. supports the hypothesis that school officials are not using scientific evidence as the basis for their actions. With all of the current emphasis on improving K-12 education, the potential of this study to demonstrate significant changes in attendance and graduation
rates of students simply by adjusting school start times is a critical component of educational reform and of critical importance to educational leaders. Scientific research has established the link between adolescent circadian-rhythms, sleep debt and negative impacts on cognitive function, behavior, attendance, health difficulties, and social and emotional health.

Prior research conducted by Wahlstrom examined the effects of school start times in various districts with conclusions linked to improved graduation rates in only one school district three years after the implementation of a delayed start time of 8:30 a.m. Extended research that examines the impact of delayed start times in other districts throughout the country will add rigor to the previous findings. Therefore the first aim of this investigation is to compare pre-delay (8:30 a.m. or earlier) graduation completion rates with post-delay (later than 8:30 a.m.) graduation rates in the same eight school districts two years following implementation. The second purpose of this study is to assess whether attendance rates improve with a delay in school start time of later than 8:30 a.m. in the morning.

Participants and methods

This study examines the impact of delayed school start times on the percentage of high school absences and graduation rates at the school level. The data for the study is from *School Start Time Change: An In-Depth Examination of School Districts in the United States* from the Children’s National Medical Center’s (CNMC) Division of Sleep Medicine pre-delay and post-delay school start times. The CNMC team collected data from school districts throughout the nation that successfully implemented delayed start times in high schools. Additional data, graduation rates, and attendance rates, are obtained from state repositories. The current research was conducted utilizing the data from the state repositories of 29 schools in seven states and eight school districts (of 38 districts in the original study) specifically collecting attendance and graduation rates at two time periods (pre and post delay). This design controls for school-to-school differences, and eliminates competing explanations for any observed changes in the response variables. It is acknowledged that not all schools calculate the response variables using the same methodology. However, as mentioned, the design of the study, a within subject design allows for any school-to-school difference in the calculation of the response variable to be controlled for. In addition, the analytical technique used for this study, a general linear model (ANOVA), reduces measurement error (any school to school variability) to a greater extent than a difference score analysis, and has increased power to conduct this analysis. This is the recommended technique for a study that may include data with potential measurement error.

For this study, results are intended to be generalized to all high schools in the United States. However, the source for this study is limited to a convenience sample of districts participating in the Children’s National Medical Center’s (CNMC) Division of Sleep Medicine. Hence, schools and school districts are not a random sample of all high schools and this may limit the generalizability of the results. The participating eight school districts of the 38 districts in the original CNMC study (n = 29 high schools) are located in seven different states. To ensure a comprehensive treatment effect, only districts with post-start delay of over 2 years are included. The pre-post design ensures
that each school serves as its own control, minimizing effects due to school-to-school variability.

A census of the participating schools comes from the CNMC’s Division of Sleep Medicine study \(^{36}\). The participating districts and the complete list of participating schools within each district along with the date of the time changes and increase in number of minutes from pre to post delay are included in Table 1. There is some variability in original start times (with a mean increase in minutes from pre to post time change of 74 minutes), but all meet the category of pre start times of 8:30 a.m. or earlier and post start times later than 8:30 a.m. two years after the time change \(^{36}\).

Table 1
List of schools and time changes.

<table>
<thead>
<tr>
<th>Location</th>
<th>Pre-delay time</th>
<th>Delay start Time</th>
<th>Increase in time Change (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bedford County Public Schools, Virginia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jefferson Forest HS</td>
<td>Before 2013: 8:30-3:00</td>
<td>After 2013: 8:55-3:35</td>
<td>(25 min.)</td>
</tr>
<tr>
<td>Liberty HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stauton River HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brevard PS, FL:</td>
<td>Before 2000: 7:30-2:15</td>
<td>After 2000: 8:45-3:30</td>
<td>(75 min.)</td>
</tr>
<tr>
<td>Astronaut HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coca Beach Jr./Sr. HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coca HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eau Gallie HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melbourne HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merritt Island HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rockledge HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Satellite HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Titusville HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ithaca City SD, NY:</td>
<td>Before 2006: 8:00-2:37</td>
<td>After 2006: 8:55-3:32</td>
<td>(55 min)</td>
</tr>
<tr>
<td>Ithaca Senior HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moore County, N.C.:</td>
<td>Before 2012: 8:00-3:00</td>
<td>After 2012: 9:00-4:00</td>
<td>(60 min.)</td>
</tr>
<tr>
<td>North Moore HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinecrest HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Union Pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Clackamas SD, OR:</td>
<td>Before 1999: 7:30-2:20</td>
<td>After 1999: 8:45-3:20</td>
<td>(75 min.)</td>
</tr>
<tr>
<td>Clackamas HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pulaski County Special, SD:</td>
<td>Before 2012: 7:30-2:40</td>
<td>After 2012: 8:35-3:45</td>
<td>(65 min.)</td>
</tr>
<tr>
<td>Jacksonville HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joe T. Robinson HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maumelle HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North Pulaski HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvan Hill HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wilbur D. Mills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Rosa SD, FL:</td>
<td>Before 2006: 8:00-2:45</td>
<td>After 2006: 9:15-3:15</td>
<td>(75 min.)</td>
</tr>
<tr>
<td>Gulf Breeze</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milton HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navarre HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pace HS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South Washington, MN:</td>
<td>Before 2009: 7:35-2:05</td>
<td>After 2009: 8:35-3:05</td>
<td>(60 min.)</td>
</tr>
<tr>
<td>Park High School</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodbury HS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Variables

Attendance rates and graduation rates are measured under two conditions (pre-delay time and post-delay time). School attendance is reported as percentages and could range from zero to 100. School start times are coded as a bivariate categorical variable coded as a zero (early start times) and one (later start times). School graduation completion percentages are measured by graduation rates collected from school districts ranging from zero to 100.

Table 2 includes the descriptive statistics for each variable. The average graduation completion rate is 79% pre-delay and 88% post-delay. Completion rates range pre-delay from 51% to 94% and post-delay from 68% to 97%. Attendance averages 90% pre-delay and 94% post-delay, but is less variable than graduation rates with a range of 68% to 99% pre-delay and 86% to 99% post-delay.

Table 2
Dependent variables and descriptive statistics.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Descriptive Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variables:</td>
<td>Mean Minimum Maximum SD</td>
</tr>
<tr>
<td>School Attendance (pre-delay)</td>
<td>90% 68% 99% 6%</td>
</tr>
<tr>
<td>School Attendance (post-delay)</td>
<td>94% 86% 99% 2%</td>
</tr>
<tr>
<td>School Graduation (pre-delay)</td>
<td>79% 51% 94% 13%</td>
</tr>
<tr>
<td>School Graduation (post-delay)</td>
<td>88% 68% 97% 9%</td>
</tr>
</tbody>
</table>

Data Analysis

Data were entered in SPSS version 22 and all transformations, data cleaning, descriptive and inferential statistics were conducted in this software package. Descriptive statistics summarized each variable to identify any potentially erroneous entries or any non-normality in the continuous variables. Statistically significant relationships were determined based on an alpha level of .025 or less to protect against the inflation of Type I error.

ANOVA assumptions (independence, normal distribution, and equality of variance) for both graduation rates and attendance were not met for the original variables. To remediate this, each response variable was reverse coded (subtracted by 1), and the log of this variable was calculated. The results for all inferential procedures refer to these reverse coded logs, with no evidence of violating ANOVA assumptions.

Research Question 1

What are pre to post start time delay differences in graduation rates in the same schools one year before implementation of delayed start versus two years after the implementation of delayed start times?
Descriptive Statistics

As mentioned, average overall graduation rate (before transformation) was 83% across both the pre and post measures. Schools ranged from a minimum of 51% to a maximum of 97%. The standard deviation of 11% indicates differences greater than 36% were considered extreme.

The next step in the descriptive statistics is a bivariate presentation of graduation rates by time. Table 2 includes the means, median and standard deviations for pre-delay and post-delay graduation rates. The mean at the pre-delay, earlier start times, is 79%, and the mean at the post-delay is 88%. The upward trend in the rates suggests graduation rates may be improving with changes in school start times. For both time periods, the median is slightly higher than the mean, indicating both time periods may also be left skewed, similar to the aggregate data.

![Boxplot](image.png)

Figure 1. Boxplot of pre and post delay graduation rates.

The boxplot in Figure 1 provides a graphical illustration of the graduation rates at both bell times. In this figure, the median for post-delay time appears higher than for the pre-delay.

Inferential Statistics

Repeated Measures ANOVA

The final model for research question number one is a repeated ANOVA, calculated to assess whether there is a significant difference in graduation rates after a school-start delay of later than 8:30 a.m. was implemented. The equation for the model is:

\[
\text{Graduation rate} = \text{year} + \text{error}.
\]

The null hypothesis for the model is that no difference exists in graduation rates between pre and post delay years (Ho: \(\mu_1=\mu_2\)). The alternative hypothesis is that there is a significant difference between pre and post delay years (Ho: \(\mu_1 \neq \mu_2\)).

Given that the assumptions are met, the model for determining if significant differences exist between pre and post delay graduation rates can be interpreted. Table 3
includes the result of the repeated measure ANOVA. This table indicates the F statistic of 32.465 with df of 28, is statistically significant allowing rejection of the null hypothesis that there is no difference between the times ($p < .01$), well below the significance level for this study of 0.025. Hence significant increases occurred in graduation rates comparing pre and post delay times. These results mirror those in the bivariate descriptive statistics. In Figure 1, the boxplot illustrates this trend, with the median for the post-graduation rates appearing to be greater than the median for pre graduation.

Table 3
Graduation rate fixed effects.

<table>
<thead>
<tr>
<th>Source</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>28.00</td>
<td>326.06</td>
<td>.000</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>28.00</td>
<td>32.47</td>
<td>.000</td>
</tr>
</tbody>
</table>

The conclusion of the analysis suggests there is a significant difference in graduation rates when school start times are delayed. These results are made with confidence because the model using transformed data meets the assumptions of normal distribution and equal variance.

Question Two

What are pre to post start time delay differences in the same schools one year before implementation of delayed start versus two years after the implementation of delayed start times in attendance rates?

Descriptive Statistics

Table 2 includes the means, median and standard deviations for pre-delay and post-delay attendance rates. The mean at the pre-delay, earlier start times, is 90%, and the mean at the post-delay is 94%. The upward trend in the rates suggests attendance rates may be improving with changes in school start times. For both time periods, the median is slightly higher than the mean, indicating both time periods may also be left skewed, similar to the aggregate data.

The boxplot in figure 2 compares attendance rate pre-delay (0) and post-delay (1) time change and shows an average increase in attendance rates from 90% to 94%. There is at least one school in the pre-delay time that appears to have extremely low attendance, and one school that has extremely low attendance in the post-delay time as evidenced by the asterisks in figure 2.
Figure 2. Boxplot of attendance by time.

Inferential Statistics

The model for research question number two is a repeated ANOVA, calculated to assess whether there is a significant difference in attendance rates after a school-start delay of later than 8:30 a.m. was implemented. The equation for the model is:

\[
\text{Attendance rate} = \text{year} + \text{error}
\]

Again, the null hypothesis is that there are no differences between pre and post year (\(H_0: \mu_1 = \mu_2\)) and the alternate hypothesis is that there are significant differences between pre and post delay attendance rates (\(H_0: \mu_1 \neq \mu_2\)).

The ANOVA model for attendance rate is significant between the pre-delay year and post-delay year at the .025 level with an \(F\) statistic of 12.88 and a \(df\) of 25.86 (Table 4). This means that delayed start time is an important and significant predictor for improved attendance rates.

Table 4

ANOVA transformed attendance.

<table>
<thead>
<tr>
<th>Source</th>
<th>Numerator df</th>
<th>Denominator df</th>
<th>(F)</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>1</td>
<td>28.94</td>
<td>943.71</td>
<td>.000</td>
</tr>
<tr>
<td>Year</td>
<td>1</td>
<td>25.86</td>
<td>12.88</td>
<td>.001</td>
</tr>
</tbody>
</table>

Dependent Variable: Transformed Attendance

The conclusion of the analysis suggests there is a significant difference in attendance rates when school start times are delayed. The transformed data meets the assumptions of normal distribution and equal variance. Independence is still violated by the design of the model however running repeated measures remediates this assumption.
Results

To study the significance of delayed school start times on high school attendance and graduation rates, the following research questions guided this study: (a) Are there significant differences in graduation rates when comparing traditional to delayed school start times? (b) Are there significant differences in attendance rates when comparing traditional to delayed school start times? This study hypothesized that when schools change the start time from 8:30 a.m. or earlier to later than 8:30 a.m., graduation rates and attendance rates would increase. The first research question investigated the potential benefits of delayed school start times of later than 8:30 a.m. for high school graduation rates. Twenty-nine schools were included in the sample. Two of the school districts were located in the state of Florida, totaling 18 schools. The remaining 11 schools were found in school districts located in the states of Virginia, New York, North Carolina, Oregon, Arkansas, and Minnesota.

Research Question One: What are pre to post start time delay differences in graduation rates in the same schools one year before implementation of delayed start versus two years after the implementation of delayed start times?

The one-way repeated measures ANOVA (pre-delay and post-delay times) indicates a significant difference between the transformed graduation rates before and after delaying school start time of later than 8:30 a.m. This study extends Wahlstrom’s study 11 to empirically examine graduation rates before and after implementation of a delayed school start time.

Research Question Two: What are pre to post start time delay differences in the same schools one year before implementation of delayed start versus two years after the implementation of delayed start times in attendance rates as a measure of social-emotional well-being?

A one-way repeated ANOVA comparing pre and post time change in attendance rates increased with delays in start times. The significant results of this study are consistent with existing studies 31, 36. Wahlstrom et al. 35 utilized a longitudinal study, and the current pre and post two-year replication adds further support to their findings. The findings supported the hypothesis of the current study that students that started school later than 8:30 a.m. would have better attendance rates.

Discussion

The results of this study lend empirical evidence and add rigor to the argument that a shift to later school start times for high school students results in more favorable outcomes, such as attendance rates and graduation rates. This study draws from the work by Wahlstrom, 11 who found improvement in attendance and graduation rates (one district) limited to only one state.

While this study does not specifically measure the amount of sleep, the results are consistent with prior research linking later school start times to more sleep 11, 35. The connection between later school start times and more sleep is important, but the results of significant improvements in graduation rates allow practitioners to see the positive, and socially important outcome of such a policy shift, increased graduation. Linking changes in school start times to graduation rates connects outcomes to policy.
Finally, while this study does not examine social-emotional outcomes linked to the amount of sleep obtained, the results do support the improvement in attendance with later start times. Given the empirical evidence to support psycho-social outcomes and attendance already established in the literature, the reasoning that later school start times allow for more sleep which reduces negative social-emotional outcomes, promoting improved attendance is possible. Again, these connections are beyond the scope of this study, but certainly this is a promising opportunity for further research.

Implications for future research and practical application.

The current study provides statistical evidence that both graduation rates and attendance rates significantly improved after the implementation of a delayed school start time. The study adds to the existing literature and addresses the benefits of later high school start times, contributing to improved graduation and attendance rates. Basic sleep needs are met so students attend school more frequently and graduate. With additional evidence such as this study, the policy changes so widely sought can further justifications for influencing educational leaders to make change.

Implications for students.

Results of the current study could impact adolescent students. This study supports a relationship between adolescent sleep and increased attendance and graduation rates. Understanding the relationship between adequate amounts of sleep and daytime functioning is important. The present study provides evidence that with a delay in start times students reap the benefit of a school schedule that is in synchronization with their internal biological clock.

Implications for other stakeholders.

The results of this study have implications for policy makers at the federal, state and local levels looking to improve the graduation rates for high school students. The promise of increased student success and graduation completion is already driving some officials to implement later school start times in high schools. Evidence contained in this study add rigor and will provide further justification for other officials to consider these changes. An adjustment to later high school start times can be unattainable without the support of key officials, and the continuing investigation of the benefits of delayed start times could encourage new support for policy change.

Stakeholders who understand adolescent sleep should continue to advocate for this reform. Through her actions in Congress since 1999, Representative Zoe Lofgren of California has prioritized the high school student and has advocated for bell times that match adolescent sleep/wake cycles. Evidence from this study suggests that the benefits of improved graduation completion rates make it an even more powerful argument. Physicians, especially those who treat adolescents, have campaigned since 1994 to allow teenagers to start school later. It would be hard to imagine that their argument has weakened given the evidence from this study that delayed school start times of later than 8:30 a.m. suggests improved attendance and graduation rates.
Conclusion

The overall findings from this study are consistent with, and extend the evidence in the literature. Improved attendance rates increase the likelihood of graduation completion. Every student should have an equal opportunity to graduate from school. If a delayed start time of later than 8:30 a.m. promotes improved student access to attending, learning, and graduating then all of society benefits because increased graduation completion impacts quality of life.

Improving graduation completion is a clear educational benefit. Less obvious are the reasons why a delayed school start enables students to attend school, an effect beyond the scope of this study. Given the many impacts of improved attendance and graduation rates, educators and officials responsible for setting school start times should be obliged to consider a shift to later bell times if it improves adolescent wellbeing and daytime performance. Gaining an understanding about the underlying biological underpinnings of adolescent sleep needs is the first step to making change. The brain and the nervous system require optimal sleep to function, and adolescents have a unique set of sleep needs that should be considered before school start times are determined. The decision to start high school later requires a shift in mindset. With support of empirical investigations such as this study, educators are in a pivotal position to become change agents and advocates for high school students by teaching all stakeholders about adolescent sleep. These changes accomplish what all educators and educational leaders aspire to: student success.

23. Roberts RE, Duong HT. Obese youths are not more likely to become depressed, but depressed youths are more likely to become obese. Psychological Medicine. 2013; 43:2143–2151.

